Г

Questionbank Biology

Unit -IV

Chapter-17. Respiration

IMPORTANT POINTS

•	Important of Respiration in living organisms
	The breakdown of C-C bonds of complex compounds through oxidation with in cell releasing considerable amount of energy is called respiration.
•	Glycolysis : The breakdown of glucose to pyruyic acid is called glycolysis. This process occurs in the cytoplasm of cells.
•	There are three major ways in which different cell handle pyruyic acid these are lactic acid fermentation, alcoholic fermentation and aerobic respiration.
•	Aerobic respiration includes krebs cycle and oxidative phosphorylation in addition to glycolysis.
•	All reaction of krebs cycle are carried out in the matrix of mitochondria and ETS (oxidative phosphorylation) carried out on inner membrance of mitochondria.
•	Respiratory pathway is involved in both anabolic and catabolic processes and hence it is also known as an amphibolic pathway rather then as a catabolic one.
•	During aerobic respiration O_2 is consumed and CO_2 is released. The ratio of CO_2 to the O_2 consumed during respiration is called Respiratory Quotient (RQ)
<u> </u>	For the given options select the correct options (a, b, c, d) each carries one mark.
1.	Respiration is (Grujarat GET Q.B.)
	(a) Anabolic process (b) Catabolic process

	(c) Both a and b		(d) Endothermic proces	ss.
2.	Metabolism involves			
	(a) Anabolic process		(b) Catabolic process	
	(c) Both a and b		(d) Only redox process	
3.	Organisms obtain energ	y through		
	(a) Reproduction	(b) Excretion	(c) Respiration	(d) Digestion
4.	Respirations is a			
	(a) Endepgonic process	5	(b) Exergonic process	
(c) Both A and B (d) Neutralisat		(d) Neutralisation reacti	on	
5.	During respiration the fe	ood is		
	(a) Oxidised		(b) Reduced	
	(c) Both oxidised and re	educed	(d) Neither oxidised not	r reduced
6.	Which of the following	is a main respiratory subs	trate in animals	
	(a) Fructose	(b) Starch	(c) Glucose	(d) Proteins

		Questionbank	c Biology			
7.	. During the formation of ATP from ADP, which is released					
	(a) Water	(b) Oxygen	(c) Both A and B	(d) Energy		
8.	Respiration is found in		~ /			
	(a) Bacteria	(b) Prokaryotes	(c) Only animals	(d) All these		
9.	Respiratory substrate	is completely oxidised in				
	(a) Aerobic respiration	1	(b) Anaerobic' respira	ation.		
	(c) Both A and B		(d) Fermentation			
10.	In which of the follow	ing types of respiration, th	e amount of energy releas	sed is comparatively more		
	(a) Aerobic respiration	1	(b) Anaerobic respiration			
	(c) Equal energy is released in both A and B		(d) None of these in correct			
11.	Fermentation occurs in	n the				
	(a) Presence of oxygen		(b) Presence of water			
	(c) Absence of oxygen		(d) Mitochondria			
12.	First stage in respiration	on is				
	(a) Glycolysis	(b) Krebs cycle	(c) ETS	(d) Glycogenesis		
13.	Glucose is converted t	o pyruvic acid in				
	(a) Krebs cycle	(b) C_4 cycle	(c) C_3 cycle	(d) Glycolysis.		
14.	Number of pyruvic act	d molecules formed in gl	ycolysis is	(Gujarat GET Q.B.)		
	(a) l	(b) 2	(c) 3	(d) 6		
15.	Number of carbons pr	esent in a pyruvic acid t r	nolecule is			
	(a) 2	(b) 3	(c) 4	(d) 6		
16.	Glycolysis occurs in			(Gujarat GET Q.B)		
	(a) Cytoplasm (b) Mit	tochondria	(c) Chloroplast	(d) Golgi complex		
17.	Number of oxygen mo	lecules used in glycolysis				
	(a) 12	(b) 4	(c) 6	(d) 0		
18.	Number of CO ₂ molec	cules produced in glycoly	sis is			
	(a) 2	(b) 3	(c) 4	(d) 0		
19.	In respiration, final acc	ceptor of protons is :				
	(a) Oxygen	(b) NAD^+	(c) FAD	(d) UQ		
20.	Which is not formed d	uring anaerobic respiration	on?			
	(a) Pyruvate	(b) Ethyl alcohol	(c) Acetyl CoA	(d) CO_2		
21.	ADP combines with in	organic phosphate (Pi) to	give	-		
	(a) ATP	(b) AMK	(c) GDP	(d) GTP		
22.	Dihydroxy acetone ph	osphate is a				
	(a) 2 C compound	(b) 3 C compound	(c) 4 C compound	(d) 6 C compound		
23.	Number of ATPs cons	umed in glycolysis are				
	(a) 2	(b) 4	(c) 6	(d) 8		

		Questionbank	Biology	
24.	Substrate in glycolysis i	s normally		
	(a) Fructose		(b) Glucose	
	(c) Pyruvic acid		(d) Phosphoglyceric a	cid
25.	Decarboxylation of pyr	uvic acid results in the for	mation of	
	(a) Water	(b) Acetyl CoA	(c) Glucose	(d) PGA.
26.	Number of direct ATPs	produced in glycolysis is		(Gujarat GET Q.B.)
	(a) 2	(b) 4	(c) 6	(d) 1
27.	Number of reduced coe	enzymes NADH produce	d during glycolysis are	
	(a) 1	(b) 2	(c) 4	(d) 6
28.	Net gain of glycolysis is	6		
	(a) 3 ATP and 1 NADE	$H + H^+$	(b) 2 ATP and 2 NAD	$OH + H^+$
	(c) 6 ATP and 4 NADH + H^+		(d) 10 ATP and 6 NA	$DH + H^+$
29.	In respiration, the oxyg	en is used in		
	(a) Glycolysis	(b) Krebs cycle	(c) ETS	(d) Fermentation
30.	One molecules of NAL	$DH + H^+$ gives how many	ATPs in ETS	(Gujarat CETQ.B.)
	(a) 2 ATP	(b) 3 ATP	(c) 4 ATP	(d) 6 ATP
31.	Conversion of pyruvic acid to acetyl Co A is called			
	(a) Glycolysis		(b) Fermentation	
	(c) ETS		(d) Oxidative decarbo	xylation
32.	Reduction of acetaldeh	yde gives		
	(a) Methyl alcohol	(b) Ethyl alcohol	(c) Glycerol	(d) All these
33.	Lactic acid is formed de	ue to the reduction of		(Gujarat GET Q.B.)
	(a) Pyruvic acid	(b) Acetaldehyde	(c) Malic acid	(d) Acetyl CoA
34.	Fermentation is the prir	nary mode of energy proc	luction in	
	(a) Higher plants	(b) Animals	(c) Yeast	(d) Algae.
35.	Krebs cycle occurs in			(Gujarat GET Q.B.)
	(a) Cytoplasmic matrix		(b) Mitochondrial matrix	
	(c) F_1 particles		(d) All these	
36.	Krebs cycle is also kno	own as		
	(a) Citric acid cycle	(b) TCA cycle	(c) Both a and b	(d) Calvin cycle
37.	The location of ETS is	• ?		
	(a) Mitochondria! matri	ix	(b) Cytoplasm	
	(c) Outer mitochondria	lmembranes	(d) Inner mitochondria	al membrane
38.	Krebs cycle starts with	the condensation of acety	yl CoA with	
• -	(a) Pyruvic aicd	(b) Oxalo-acetic acid	(c) Malic acid	(d) Citric acid
39.	α - keto glutaric acid c	onsists of		
	(a) 3 carbons	(b) 4 carbons	(c) 5 carbons	(d) 6 carbons

		Questionbank I	Biology		
40.	Citric acid cycle was p	roposed by			
	(a) Krebs	(b) Calvin	(c) Mendel	(d) Lavosier	
41.	Direct synthesis of ATH	Ps in one turn of Krebs cyc	le is		
	(a) l	(b) 2	(c) 3	(d) 4	
42.	Number of NADH ⁺ H ⁻	⁺ , formed in one turn of K	rebs cycle is		
	(a) 2	(b) 4	(c) 6	(d) 5	
43.	Number of FADH ₂ for	med in one turn of Krebs c	cycle is		
	(a) l	(b) 2	(c) 3	(d) 4	
44.	Number of ATPs which $(a) 1$	h can be generated by one (b) 2	FADH ₂ in ETS are	(Gujarat GET Q.B.)	
15	(a) I Example $\Delta T P_{c}$ in n	(U) 2 nitochondria is known as	(0) 5	(u) 4	
45.	(a) Ovidative phosphor	vilation	(b) Cyclic photophosph	orvlation	
	(a) Nonevelic photophosphorylatian		(b) Cyclic photophosphorylation (d) Formentation		
46.	Formation of ATP occu	Irs	(d) I efficilitation		
	(a) In outer mitochond	rial membrane	(b) On F, particles		
	(c) Mitochondrial matrix		(d) In mitochondrial DNA		
47.	Phosphorylation means				
	(a) Formation of reduced coenzymes		(b) Formation of PGA		
(c) Formation of ATP			(d) Breakdown of ATP		
48.	Oxidative phosphorylat	tion occurs in			
	(a) Mitochondria	(b) Chloroplast	(c) Cytoplasm	(d) Golgi bodies	
49.	The metal ion present in	n cytochromes is			
	(a) Copper	(b) Iron	(c) Magnesium	(d) Zinc	
50.	CO_2 release occurs in				
	(a) Photosynthesis	(b) Respiration	(c) Transpiration	(d) Guttation	
51.	R.Q. stands for				
	(a) Reduction quotient	(b) Respiratory quotient	(c) Reverse quotient	(d) None of these	
52.	R.Q. of carbohydrates	is			
	(a) l	(b) 2	(c) 3	(d) 4	
53.	R.Q. of anaerobic respi	iration is			
	(a) Zero	(b) Infinity	(c) Less than one	(d) More than one	
54.	When amount of CO_2 t	aken from atmosphere (in	photosynthesis) become	es equal to the amount of	
	CO ₂ released in atmosphere (in respiration), this is called				
	(a) Final point		(b) Compensation point		
	(c) Balance point		(d) Equal distribution		
55.	Alternative pathway for	r respiration is			
	(a) Photorespiration		(b) Pentose phosphate	pathway	
	(c) C ₃ cycle		(d) C ₄ cycle		
		192			

56. Which of the following processes is common for arcrobic and anaerobic respiration(a) Glycolysis(b) Krebs cycle(c) ETS(d) None of these57. Anaerobic respiration is also called(c) Glycolysis(d) Krebs cycle(a) Fermentation(b) PPP pathway(c) Glycolysis(d) Krebs cycle58. How many ATP are formed during dephosphorylation in glycolysis ?(d) 6ATP59. R.Q. of oxalic acid is(c) 0.7(d) 6ATP(a) Infinity(b) 4(c) 0.7(d) 160. Which process occurs in cytosol ?(d) Oxidative phosphorylation(a) Photosynthesis(b) 4(c) 0.7(d) 161. Synthetic processes of a cell comes under(d) Oxidative phosphorylation62. Degradation processes of a cell comes under(d) Growth63. Pyruvic acid is(c) Metabolism(c) Metabolism64. CH ₃ CCOCOH(b) CH ₃ CHO(c) CH ₃ CHOH COOH(d) Cr ₃ CH ₂ OH64. CH ₃ CHO is(a) Acetaldehyde(b) Pyruvic acid(c) Ethanol(a) Acetaldehyde(b) Pyruvic acid(c) Ethanol(d) Lactic acid		Questionbank Biology					
(a) Glycolysis(b) Krebs cycle(c) ETS(d) None of these57.Anaerobic respiration := sto called(c) Glycolysis(d) Krebs cycle(a) Fermentation(b) PPP pathway(c) Glycolysis(d) Krebs cycle58.How many ATP are former during dephosphory := storing glycolysis?(d) 6ATP(a) 2ATP(b) 4ATP(c) 3 ATP(d) 6ATP59.R.Q. of oxalic acid is: (a) Infinity(b) 4(c) 0.7(d) 160.Which process occurs := storos ?(d) 1(d) 161.Synthetic processes of cult comes under (c) Glycolysis(b) Metabolism(b) Krebs cycle(d) Growth62.Degradation processes of a cell are referred under (a) Anabolism(b) Catabolism(d) Growth63.Pyruvic acid is: (a) Ch3_COCOOH(b) CH3_CHO(c) CH3_CHOROOF(d) Growth64.CH3_CHO is (a) Acetaldehyde(b) Pyruvic acid(c) Ethanol(d) Lactic acid	56.	Which of the following	g processes is common f	or aerobic and anaerobic res	piration		
57.Anaerobic respiration is also called (a) Fermentation(b) PPP pathway(c) Glycolysis(d) Krebs cycle58.How many ATP are for		(a) Glycolysis	(b) Krebs cycle	(c) ETS	(d) None of these		
(a) Fermentation(b) PP pathway(c) Glycolysis(d) Krebs cycle58.How many ATP are forward during dephosphorylation in glycolysis?(d) 6ATP(a) 2ATP(b) 4ATP(c) 3 ATP(d) 6ATP59.R.Q. of oxalic acid is (a) Infinity(b) 4(c) 0.7(d) 160.Which process occurs is rytosol?(d) Nich process occurs is rytosol?(d) Oxidative phosphorylation61.Synthetic processes of a cell comes under (a) Anabolism(b) Metabolism(c) Catabolism(d) Growth62.Degradation processes of a cell are referred under (a) Anabolism(b) Catabolism(c) Metabolism(d) Growth63.Pyruvic acid is (a) CH_3COCOOH(b) CH_3CHO(c) CH_3CHOHCOOH(d) CH_3CH_2OH64.CH_3CHO is (a) Acetaldehyde(b) Pyruvic acid(c) Ethanol(d) Lactic acid	57.	Anaerobic respiration	is also called				
58.How many ATP are forward during dephosphory lation in glycolysis ?(a) 2ATP(b) 4ATP(c) 3 ATP(d) 6ATP59.R.Q. of oxalic acid is (a) Infinity(b) 4(c) 0.7(d) 160.Which process occurs in vytosol ?(d) Photosynthesis(b) Krebs cycle (d) Oxidative phosphory lation61.Synthetic processes of a cell comes under (a) Anabolism(b) Metabolism(c) Catabolism62.Degradation processes of a cell are referred under (a) Anabolism(d) Growth63.Pyruvic acid is(c) Metabolism(d) Growth63.Pyruvic acid is (a) CH_3COCOOH(b) CH_3CHO(c) CH_3CHOH COOH(d) CH_3CH_2OH64.CH_3CHO is (a) Acetaldehyde(b) Pyruvic acid(c) Ethanol(d) Lactic acid		(a) Fermentation	(b) PPP pathway	(c) Glycolysis	(d) Krebs cycle		
(a) 2ATP(b) 4ATP(c) 3 ATP(d) 6ATP59.R.Q. of oxalic acid is(a) Infinity(b) 4(c) 0.7(d) 160.Which process occurs \cdot votosol ?(a) Photosynthesis(b) Krebs cycle(d) Oxidative phosphorytation(c) Glycolysis(d) Oxidative phosphorytation61.Synthetic processes of $-$ cell comes under(a) Anabolism(b) Metabolism(c) Catabolism(a) Anabolism(b) Metabolism(c) Catabolism62.Degradation processes $-$ a cell are referred under(a) Anabolism(b) Catabolism(c) Metabolism63.Pyruvic acid is(a) CH ₃ COCOOH(b) CH ₃ CHO(c) CH ₃ CHOH COOH64.CH ₃ CHO is(c) Ethanol(d) Lactic acid(a) Acetaldehyde(b) Pyruvic acid(c) Ethanol(d) Lactic acid	58.	How many ATP are for	rmed during dephosphor	rylation in glycolysis ?			
59.R.Q. of oxalic acid is (a) Infinity(b) 4(c) 0.7(d) 160.Which process occurs in cytosol ? (a) Photosynthesis(b) Krebs cycle (d) Oxidative phosphorylation61.Synthetic processes of a cell comes under (a) Anabolism(b) Metabolism(c) Catabolism62.Degradation processes of a cell are referred under (a) Anabolism(b) Catabolism(c) Metabolism63.Pyruvic acid is (a) CH_3COCOOH(b) CH_3CHO(c) CH_3CHOH COOH(d) CH_3CH_2OH64.CH_3CHO is (a) Acetaldehyde(b) Pyruvic acid(c) Ethanol(d) Lactic acid		(a) 2ATP	(b) 4ATP	(c) 3 ATP	(d) 6ATP		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	59.	R.Q. of oxalic acid is					
60.Which process occurs is sytosol?(a) Photosynthesis(b) Krebs cycle(a) Photosynthesis(b) Catabo Cycle(c) Glycolysis(d) Oxidative phosphorytation61.Synthetic processes of a cell comes under (a) Anabolism(b) Metabolism(c) Catabolism(d) Growth62.Degradation processes of a cell are referred under (a) Anabolism(b) Catabolism(c) Metabolism(d) Growth63.Pyruvic acid is (a) CH3COCOOH(b) CH3CHO(c) CH3CHOH COOH(d) CH3CH2OH64.CH3CHO is (a) Acetaldehyde(b) Pyruvic acid(c) Ethanol(d) Lactic acid		(a) Infinity	(b) 4	(c) 0.7	(d) 1		
	60.	Which process occurs in cytosol?					
(c) Glycolysis(d) Oxidative phosphoryLiton61.Synthetic processes of a cell comes under (a) Anabolism(b) Metabolism(c) Catabolism(d) Growth62.Degradation processes $- a$ cell are referred under (a) Anabolism(b) Catabolism(c) Metabolism(d) Growth63.Pyruvic acid is (a) CH_3COCOOH(b) CH_3CHO(c) CH_3CHOH COOH(d) CH_3CH_2OH64.CH_3CHO is (a) Acetaldehyde(b) Pyruvic acid(c) Ethanol(d) Lactic acid		(a) Photosynthesis		(b) Krebs cycle			
61.Synthetic processes of a cell comes under(a) Anabolism(b) Metabolism(c) Catabolism(d) Growth62.Degradation processes of a cell are referred under(a) Anabolism(b) Catabolism(c) Metabolism(d) Growth63.Pyruvic acid is(a) CH ₃ COCOOH(b) CH ₃ CHO(c) CH ₃ CHOH COOH(d) CH ₃ CH ₂ OH64.CH ₃ CHO is(a) Acetaldehyde(b) Pyruvic acid(c) Ethanol(d) Lactic acid		(c) Glycolysis		(d) Oxidative phosphory	lation		
(a) Anabolism(b) Metabolism(c) Catabolism(d) Growth62.Degradation processes of a cell are referred under (a) Anabolism(b) Catabolism(c) Metabolism(d) Growth63.Pyruvic acid is (a) CH ₃ COCOOH(b) CH ₃ CHO(c) CH ₃ CHOH COOH(d) CH ₃ CH ₂ OH64.CH ₃ CHO is (a) Acetaldehyde(b) Pyruvic acid(c) Ethanol(d) Lactic acid	61.	Synthetic processes of	f a cell comes under				
 62. Degradation processes of a cell are referred under (a) Anabolism (b) Catabolism (c) Metabolism (d) Growth 63. Pyruvic acid is (a) CH₃COCOOH (b) CH₃CHO (c) CH₃CHOH COOH (d) CH₃CH₂OH 64. CH₃CHO is (a) Acetaldehyde (b) Pyruvic acid (c) Ethanol (d) Lactic acid 		(a) Anabolism	(b) Metabolism	(c) Catabolism	(d) Growth		
(a) Anabolism(b) Catabolism(c) Metabolism(d) Growth63.Pyruvic acid is (a) $CH_3COCOOH$ (b) CH_3CHO (c) $CH_3CHOH COOH$ (d) CH_3CH_2OH 64. CH_3CHO is (a) Acetaldehyde(b) Pyruvic acid(c) Ethanol(d) Lactic acid	62.	52. Degradation processes of a cell are referred under					
 63. Pyruvic acid is (a) CH₃COCOOH (b) CH₃CHO (c) CH₃CHOH COOH (d) CH₃CH₂OH 64. CH₃CHO is (a) Acetaldehyde (b) Pyruvic acid (c) Ethanol (d) Lactic acid 		(a) Anabolism	(b) Catabolism	(c) Metabolism	(d) Growth		
(a) $CH_3COCOOH$ (b) CH_3CHO (c) $CH_3CHOH COOH$ (d) CH_3CH_2OH 64. CH_3CHO is (a) Acetaldehyde (b) Pyruvic acid (c) Ethanol (d) Lactic acid	63.	Pyruvic acid is					
64. CH ₃ CHO is (a) Acetaldehyde (b) Pyruvic acid (c) Ethanol (d) Lactic acid		(a) CH ₃ COCOOH	(b) CH ₃ CHO	(c) CH ₃ CHOH COOH	(d) CH_3CH_2OH		
(a) Acetaldehyde (b) Pyruvic acid (c) Ethanol (d) Lactic acid	64.	CH ₃ CHO is					
		(a) Acetaldehyde	(b) Pyruvic acid	(c) Ethanol	(d) Lactic acid		
65. CH ₃ CH ₂ OH represents	65.	55. CH ₂ CH ₂ OH represents					
(a) Lactic acid (b) Acetic acid (c) Ethanol (d) Pyruvic add		(a) Lactic acid	(b) Acetic acid	(c) Ethanol	(d) Pyruvic add		
66. Respiratory substances are	66.	Respiratory substance	s are				
(a) Substances available from air (b) Nutritive substances present in food		(a) Substances available from air		(b) Nutritive substances	present in food		
(c) Mineral elements (d) Excretory substances		(c) Mineral elements		(d) Excretory substance	ances		
67. For aerobic respiration, it is essential	67.	For aerobic respiration	n, it is essential				
(a) O_2 (b) CO_2 (c) CO (d) H_2S		(a) O ₂	(b) CO ₂	(c) CO	$(d) H_2 S$		
68. Acetaldehyde is formed from pyruvic acid, if it is removed	68.	Acetaldehyde is forme	ed from pyruvic acid, if it	is removed	2		
(a) H_2 (b) CHO (c) 2 OH (d) CO_2		(a) H_2	(b) CHO	(c) 2 OH	(d) CO_2		
69. Respiration type occurring in human red blood corpuscles is	69.	Respiration type occur	rring in human red blood	corpuscles is	2		
(a) Anaerobic (b) Aerobic (c) Both A and B (d) Fermentation		(a) Anaerobic	(b) Aerobic	(c) Both A and B	(d) Fermentation		
70. Yeast	70.	Yeast					
(a) Respires an aerobically, due to lack of mitochondria		(a) Respires an aerobi	cally, due to lack of mito	chondria			
(b) Respires aerobically, if it gets O ₂ , otherwise perform alcoholic fermentation		(b) Respires aerobical	ly, if it gets O ₂ , otherwise	e perform alcoholic fermenta	tion		
(c) Respires aerobically		(c) Respires aerobical	y 2	•			
(d) Can perform alcoholic fermentation		(d) Can perform alcoh	olic fermentation				

	Questionbank	Biology			
71.	The end product of glycolysis of a glucose molec	cule is			
	(a) Pyruvic acid, NADH, and ADP	(b) Pyruvic acid, 2H ⁺ , 2	2e and 4 ATP		
	(c) 2 Pyruvic acid, 2NADH, and ATP	(d) 2 Pyruvic acid, NA	DH_{2} and 2 ATP		
72.	The enzyme required to form acetaldehyde from	pyruvic acid is	2		
	(a) Hexokinase	(b) Oxidase			
	(c) Pyruvic acid decarboxylase	(d) Alcohol dehydroger	(d) Alcohol dehydrogenase		
73.	Phosphorylation in general is	,			
	(a) Combination of phosphoric acid with a chemi	ical			
(b) Formation of PGA by adding P to glycerate					
	(c) Addition of ATP to glucose				
	(d) Synthesis ATP from ADP and P				
74.	Fructose 1,6 biphosphate splits into				
	(a) PGAL and DHAP (b) PGAL and PGA	(c) PGAL and BPGA	(d) PGA and BPGA.		
75.	Oxidative phosphorylation occurs in				
	(a) Cytosol	(b) Cristae			
	(c) Mitochondrial matrix	(d) Endoplasmic reticulum,			
76.	Malic acid is formed from fumaric acid				
	(a) By addition of CO_2 (b) By addition of H_2O	H_2O (c) By removal of H_2O (d) By removal of CO_2			
77.	If CO_2 and 2H are removed from pyruvic acid, i	t is formed			
	(a) Acetyl co-enzyme A (b) Citric acid	(c) Acetate	(d) Co-A		
78.	It is by-product of Kreb's cycle				
	(a) Oxaloacetic acid (b) Citric acid	(c) Acetyl co-enzyme	(d) Acetate.		
79.	One ATP is formed when				
	(a) Succinic acid \rightarrow Fumaric acid	(b) α -ketoglutaric acid \rightarrow Succinyl CoA			
	(c) Succinyl CoA \rightarrow Succinic acid	(d) Fumaric acid \rightarrow M	alic acid.		
80.	Respiratory quotient and compensation point are				
	(a) Not related	(b) Inverse to each other			
	(c) Same	(d) Applicable to.all org	ganisms.		
81.	RQ = l, is				
	(a) The multiplication O_2 consumed O_2 and release	ased CQ ₂			
	(b) The amount of O_2 , consumed and CO_2 relea	sed are the same			
	(c) One CO ₂ molecule more released than O_2 molecule	olecule consumed			

(d) One $\rm O_2$ molecule more consumed than $\rm CO_2$ molecules released

		Question	bank Biology	
82.	If RQ is 0.7, the subst	ance needs		
	(a) More O ₂ for respir	ation		
	(b) Less O_2 for respire	tion		
	(c) O_2 is not used for i	ts respiration		
	(d) The substance has	more oxygen in its cor	nstitution	
83.	The site of occurrance	of all reactions of PP	P is	
	(a) Cytosol		(b) Mitochondrial mat	trix
	(c) Cristae		(d) Thylakoid matrix	
84.	The process occurring	during Kreb's cycle i	S	
	(a) Decarboxylation and dehydrogenation			
	(b) Decarboxylation, dehydrogenation and phosphorylation			
	(c) Decarboxylation and phosphorylation			
	(d) Dehydrogenation a	and phosphorylation		
85.	During glycolysis wate	er is released from		
	(a) 2, Phospoglyceric	acid	(b) Biphosphoglyceri	c acid
	(c) Phosphoenol pyruv	vic acid	(d) Phosphoglycerald	ehyde
86.	When human muscle c	ontracts :		
	(a) Respiration does n	ot occur		
	(b) Anaerobic respirat	on occurs, if supply o	f oxygen is insufficient	
	(c) Anaerobic respirat	on never occurs		
	(d) Always anaerobic	respiration occurs.		
87.	The correct sequence	of the three processes	s of aerobic respiration is	
	(a) Glycolysis, Kreb's	cycle, oxidative phosp	phorylation.	
	(b) Glycolysis, oxidati	ve phosphorylation ar	nd Kreb's cycle	
	(c) Kreb's cycle, glyco	lysis and oxidative ph	osphorylation	
	(d) oxidative phospho	rylation, Kreb's cycle,	glycolysis	
88.	During PPP, RuBP is f	ormed in		
	(a) Mitochondria	(b) Cytosol	(c) Stroma	(d) Chloroplas
89.	The number of ATP me	plecules formed in oxi	dative phosphorylation of or	ne glucose molecule
	(a) 6	(b) 14	(c) 28	(d) 34
90.	The number of ATP m	olecules formed in oxi	dative phosphorylation of 1	pyruvic acid
	(a) 6	(b)14	(c) 28	(d) 34
91.	How much energy spe	nt in transport of one	pyruvic acid to mitochondri	on?
	(a) Energy of 1 ATP	(b) No energy	(c) Energy of 2 ATP	(d) Not certain
92.	In anaerobic respiratio	n in plants	(CM.C	1983, CPM.T. 1992)
	(a) Oxygen is absorbe	d	(b) Oxygen is release	d
	(c) Carbon dioxide is	released	(d) Carbon dioxide is	absorbed.

		Questionba	nk Biology	
93.	Krebs cycle takes pla	ice in		
	(CPMT. 1985,	1999, M.P.P.M.T. 1997	7, AMU. 2000, AFMC 20	002, RPMT. 2005)
	(a) Vesicles of E.R	(b) Mitochondria	(c) Dictyosomes	(d) Chloroplasts.
94.	By ETS, ATP-synthe	esis occurs on the		(A.I.I.M.S. 1984)
	(a) Outer membrane of	of mitochondrion	(b) Inner membrane o	of mitochondrion
	(c) Matrix		(d) None of the abov	re
95.	Energy currency (rese	ervoir) of the cells is		
		(BHU 1984,	Kerala 2001, AMU 2003	3, MPPMT 2002)
	(a) AMP	(b) ATP	(c) RNA	(d) DNA
96.	Complete oxidation of	of glucose into pyruvic ac	id with several intermedia	te steps is known as
			(C.B.S.E. 1	988;B.H.U. 1986,1989)
	(a) TCA-pathway	(b) Glycolysis	(c) HMS-pathway	(d) Krebs cycle
97.	When a molecule of p (RPMT. 1985 BHU.	oyruvic acid is subjected (1985)	to anaerobic oxidation and	d forms lactic acid, there is
	(a) Loss of 3 ATP mo	lecules	(b) Loss of 6 ATP mo	lecules
	(c) Gain of 2 ATP mo	lecules	(d) Gain of 4 ATP mo	lecules
98.	Conversion of pyruvi	c acid into ethyl alcohol i	s facilitated by the enzyme	e (AMU. 1986)
	(a) Decarboxylase		(b) Dehydrogenase	
	(c) Decarboxylase an	d dehydrogenase	(d) Phosphotase	
99.	RQ for fatty substanc	e/fat is	(DPMT	1985; Karnataka 1999)
	(a) Infinity	(b) Less than one	(c) Greater than one	(d) Zero
100.	RQ for glucose carbo	ohydrate is (D.PM.T. 19	85, Bih. PMT. 1990, RPN	MT. 1996, Wardha2001)
	(a) 1	(b) 0.5	(c) 2	(d) 0.05
101.	An indispensable role	in energy metabolism is	played by	(D.PM.T. 1986)
	(a) Sodium	(b) Phosphorus	(c) Calcium	(d) Lithium
102.	Instantaneous source	of energy is		{A.F.M.C. 1983)
	(a) Glucose	(b) Fats	(c) Proteins	(d) Amino acid.
103.	ATP equivalents produ	iced during oxidation of s	succinate to fumarate for o	ne glucose molecule is/are (R.PMT.1988)
	(a) l	(b) 2	(c) 3	(d) 4
104.	Which of the followir	ng process is used in the c	conversion of pyruvate to (D.PM.T. 1987; C.P	acetyl CoA ? MT 1990, Kerala 2004)
	(a) Oxidative decarbo	oxylation	(b) Oxidative dehydro	ogenation
	(c) Oxidative dehydra	ation	(d) Oxidative phosph	orylation
105.	During ATP synthesis	electrons pass through		(B.H.U.1980)
	(a) H ₂ O	(b) Cytochromes	(c) CO ₂	(d) O ₂

(196)

		Questionbank	Biology	
106.	Net gain of ATP in glyco	olysis		
		(M.P.PMT. 1988; D	.P.M.T. 1983, Pb. PM	T. 2000, CPM.T. 2001)
	(a) 6	(b) 2	(c) 4	(d) 8
107.	The universal hydrogen	acceptor is '		(C.P.M.T. 1980)
	(a) NAD	(b)ATP	(c) CoA	(d) FMN
108.	Both respiration and pho	otosynthesis require		
	(M.P.PM.T. 1989	9,1993,1996; CPM.T, 19	984, 1988, 1989,-B.H	.U. 1995;A.FMC 1995)
	(a) Sunlight	(b) Chlorophyll	(c) Glucose	(d) Cytochromes
109.	In an organism utilising c	carbohydrates as its sourc	e of energy anaerobica	Illy, the R.Q. is likely (UPMER 1983)
	(a) 0.7	(b) 0.9	(c) 1.0	(d) Infinity.
110.	In plants energy is produ	uced during the process o	of	(CPMT 1981)
	(a) Photosynthesis	(b) Transpiration	(c) Respiration	(d) Water absorption
111.	In respiration pyruvic ac	eid is	(MPPMT. 1986, 1988)
	(a) Formed only when oxygen is available			
	(b) One of the products	of Krebs cycle		
	(c) Broken down into a	two carbon fragment and	d CO ₂	
	(d) A result of protlipid	oreakdown.		
112.	Maximum number of AT	P is synthesised during or	xidation of	(R.PM.T. 1990)
	(a) β - amino acid	(b) Malic acid	(c) Palmitic acid	(d) Glucose
113.	NADP ⁺ is reduced to N	ADPH in		(C.B.S.E. 1988)
	(a) HMP	(b) Calvin Cycle	(c) Glycolysis	(d) EMP
114.	Incomplete breakdown	of sugars in anaerobic res	piration forms	
			(CPM.T. 1984,1988	; M.P.P.M.T. 1987,1989)
	(a) Fructose and water	(b) Glucose and CO_2	(c) Alcohol and CO_2	(d) Water and CO_2
115.	Which of the following i	s the source of respiration	n ?	(C.P.M.T. 1979)
	(a) RNA	(b) DNA	(c) ATP	(d) Stored food
116.	Raw material of respirat	ion is		(R.R.M.T. 199)
	(a) Glucose and fructose	2	(b) Glucose and sucr	ose
	(c) Glucose + O_2		(d) Glucose + CO_2	
117.	Respiration is found in			(B.H.V. 1980)
	(a) In all living cells in lig	ht	(b) All living cells in d	ark
	(c) In all living cells both	in light and dark	(d) Only in nongreen	cells both in light and dark
118.	Anaerobic respiration is			(CPMT. 1987)
	(a) Extramolecular respi	ration	(b) Molecular respira	tion
	(c) Inter-molecular respi	ration	(d) Intra-molecular re	espiration.

	_	Questionbank	Biology	
119.	Total gain of energy in a	anaerobic respiration fron	n one glucose molecule i	is (CPMT. 1987)
	(a) Two ATP	(b) One ATP	(c) Four ATP	(d) Three ATP
120.	Final electron acceptor	in respiration is		
		(B.H.U. 1984, K	Karnataka 1994; A.F.M	.C. 1998, A.M.U. 2001)
	(a) Hydrogen	(b) Oxygen	(c) Cytochromes	(d) Dehydrogenases
121.	Oxidative phosphorylat	ion is found in	()	M.P.P.M.T. 1987, 2002)
	(a) Chloroplasts	(b) Leucoplasts	(c) Peroxisomes	(d) Mitochondria
122.	In Opunita and other suc	cculents, night time R.Q.	is	(CPMT, 1986)
	(a) One	(b) More than one	(c) Zero	(d) Less than one
123.	RQ of protein rich puls	es is '		(RPMT. 1989)
	(a) Unity	(b) Infinity	(c) More than unity	(d) Less than one
124.	Oxidation of a molecule	e of acetyl CoA produces		(RPMT. 1990)
	(a) 12 ATP	(b) 15 ATP	(c) 6 ATP	(d) 19 ATP
125.	Maximum amount of er	nergy/ATP is liberated on	oxidation of	
		(AFMC 1984, 198	88; CPMT. 1988; CB.S	S.E. 1994; AMU 1996)
	(a) Fats	(b) Proteins	(c) Starch	(d) Vitamins
126.	R.Q. is ratio of;	(C.B.S.	E.'1990;A.P.M.E.E. 19	999, Glijarat GET Q.B.)
	(a) CO_2 produced to su	Ibstrate consumed		
	(b) CO_{a} produced to C	o consumed		
	(c) Oxygen consumed t	to water produced		
	(d) Oxygen consumed	to CO produced		
127.	Connecting link betwee changed to	en glycolysis and Krebs	cycle is/before entering	g Krebs cycle pyruvate is
	(A.F.M.C, 1988; CB. 2002; AMU. 1987, 20	S.E. 1992, 1997; R.PM 001; J.LPME.R; 1989; 0 1994	IT. 1992; M.P.P.M.T. C.PMT. 1991, 94; D.P , Mampal 200l, BV. 20	1987, 88, 93, 98, 2001, M.T. 1999; A.UMS. 002, Kerala 2003, 2004)
	(a) Oxaloacetate	(b) PEP	(c) Pyruvate	(d) Acetyl CoA
128.	Apparatus to measure	rate of respiration and R	.Q. is (C.P.M.T	. 1991; C.B.S.E. 1992)
	(a) Auxanometer	(b) Potometer	(c) Respirometer	(d) Manometer
129.	Terminal cytochrome o	f respiratory chain which	donates electrons to oxy	ygen is
			(CPMT	1989; CBSE, 1992)
	(a) Cyt b	(b) Cyt c	(c) Cyt a	(d) Cyt a_3
130.	R.Q. is maximum when	respiratory substrate is	(MPPMT.	1992; A.U.M.S. 1992)
	(a) Glucose	(b) Fat	(c) Protein	(d) Malic acid.
131.	End product of citric ad	ld/Krebs cycle is	(CBSE. 19	93; Har. P.M.T. 1994)
	(a) Citric acid	(b) Lactic acid	(c) Pyruvic acid	(d) $CO_{2} + H_{2}O$

		Questionbank 1	Biology	
132.	Krebs cycle is			(AMU. 1993)
	(a) Oxidation of glucose	to alcohol and water		
	(b) Oxidation of acetyl O	CoA to carbon dioxide and	d water involving electr	on transport
	(c) Complete oxidation	of acetyl CoA without ele	ctron transport	
	(d) Complete reduction	of acetyl CoA to carbon	dioxide and water.	
133.	Most of the biological en	nergy is supplied by mitoc	chondria through (M.P.	PMT.1994, AMU. 1998)
	(a) Breaking of proteins		(b) Reduction NADP ⁺	-
	(c) Breaking of sugars		(d) Oxidising TCA sub	ostrates.
134.	Which one is a product	of glycolysis, besides 2	ATP? (CPMT.	1995; M.P.PMT. 1998)
	(a) FAD	(b) NADH	(c) NAD	(d) NADP
135.	The site of Krebs cycle	in bacteria is		(Bihar P.M.T. 1995)
	(a) Nucleoid	(b) Cytoplasm	(c) Plasma membrane	(d) Ribosomes
136.	Which is the product of a	aerobic respiration?		(A.F.M.C 1995)
	(a) Malic acid	(b) Ethyl alcohol	(c) Lactic acid	(d) Pyruvic acid
137.	Which one can respire in	the absence of oxygen?	,	(R.P.M.T. 1996)
	(a) Seeds	(b) Leaves	(c) Stem	(d) Root
138.	Lactic acid fermentation	does not produce	(A.UMS. 1996; Pb. P.	M.T. 1997; AMU. 1999)
	(a) ATP	(b) CO ₂ and NADH	(c) CO ₂	(d) NADH
139.	Electron transport syste	em of mitochondria is loca	ited in	
			(M.P.PMT. 1997, CPM	MT. 1999, R.PMT.2000)
	(a) Outer membrane	(b) Inner membrane	(c) Inter-cristal space	(d) Outer chamber.
140.	In bacteria the site for re	spiration is		(CB.S.E. 1997)
	(a) Cytoplasm	(b) Mesosome	(c) Episome	(d) Plasmid
141.	Which is wrong about c	ytochrome P-450 ?		(C.B.S.E. 1998)
	(a) Contains iron		(b) Is a coloured cell	
	(c) Is an enzyme		(d) Plays an important	role in metabolism.
142.	Production of alcohol by	y Yeast fermentation is	process	(Pb. P.M.T. 1998)
	(a) Anaerobic	(b) Aerobic	(c) Light dependent	(d) Both A and C.
143.	In glycolysis, enzyme en	olasc produces		(AM.U. 1999)
	(a) Phosphoglyceric acid	ł	(b) Phosphoenol pyru	vate
	(c) Phosphoglyceraldeh	yde	(d) Pyruvate	
144.	Oxygen is reduced to wa	ater in		(Kerala 2000,2006)
	(a) Fermentation		(b) Calvin cycle	
	(c) Electron transport		(d) Krebs cycle	
	(e) Glycolysis			

Questionbank Biology					
145.	Cytochrome is		(C.B.S.E. 2001)		
	(a) Metalloflavoprotein		(b) Fe-containing porphyrin pigment		
	(c) Lipid		(d) Glycoprotein		
146.	Isocitric acid is changed to α -oxalosucinic acid b 2001)		ру	(Tamil.Nadu	
	(a) Oxidative carboxylation		(b) Oxidative decarboxylation		
	(c) Dehydrogenation		(d) Hydrogenation and decarboxylation.		
147.	In respiration			(Manipal 2002)	
	(a) 2 PGAL are formed in glycolysis and none in Krebs cycle				
	(b) 6 PGAL in glycolysis, 3 PGAL in Krebs cycle				
	(c) 8 PGAL in glycolysis, 3 PGAL in Krebs cycle				
	(d) PGAL formation de				
148.	Glycolysis takes place in			(A.F.M.C 2003)	
	(a) All cells		(b) Only eukaryotic cells		
	(c) Muscle cells		(d) Nerve cells		
149.	Which is rich in energy			(CE.T. Chd.2003)	
	(a) NAD^+	(b) Mitochondria	(c) FAD	(d) ATP	
150.	Which one requires ox	kygen		(AMU. 2003)	
	(a) Fermentation		(b) EMP pathway		
	(c) Pentose phosphate pathway		(d) None of the above		
151.	Mechanism of aerobic respiration was discovered		d by	(A.F.M.C. 2004)	
	(a) Calvin	(b) Krebs	(c) Pasteur	(d) Hatch and Slack	
152.	Which of the following	is the first step of glycolys	is	(C.P.M.T. 2004)	
	(a) Conversion of glucose to fructose		(b) Dehydrogenation of glucose		
	(c) Breakdown of glucose		(d) Phosphorylation of glucose		
153.	53. How many ATP molecules are released when one molecule of glucose is oxidised in (C				
	(a) 36	(b) 38	(c) 2	(d) 8	
154.	RQ of anaerobic respir	ation is (Wardha2005)			
	(a) < 1	(b) 0	(c) 1	(d)>1	
155.	Which one is an import	tant intermediate formed in	all types of respiration	(Wardha2005)	
	(a) Acetyl CoA	(b) Oxaloacetate	(c) Pyruvic acid	(d) Tricarboxylic acid	
156.	What is RQ of the rea	ction $2C_{51}H_{08}O_6 + 145O_2$	$-10_{2}CO_{2} + 98H_{2}O.$	(Manipal 2005)	
	(a) 0.7	(b) 1.0	(c) 1.45	(d) 1.62	
157.	Single turn of citric aci	d cycle yields		(Kerala2005)	
	(a) 2 FADH_{2} , 2 NADH_{2} , 2 ATP		(b) 1 FADH ₂ , 2 NADH ₂ , 1 ATP		
	(c) 1 FADH 4 NADH 1 ATP		$\frac{2}{(d)} 1 \text{ FADH} 1 \text{ NADH} 1 \text{ ATP}$		
	(F) 1 FADH 1 NADI	2, H 2 ATP	(<i>a</i>) = == <u></u> ₂ , - - - ₁	2,	
	(L) 1 (L) 1 (L) 1 (L) 1 (L)	<u>, 200</u>			
-					

	Questionbank Biology						
158.	RQ is less than one, if th	(Manipal 2005)					
	(a) Organic acids	(b) Fats and proteins	(c) Sucrose	(d) Glucose			
159.	Enzyme used in convers	(J.I.PME.R. 2005)					
	(a) Hexokinase		(b) Isomerase				
	(c) Phosphokinase		(d) Phosphohexokinase				
160.). Identify the compound that links glycolysis and Krebs cycle			(Karnataka 2005)			
	(a) Oxaloacctate	(b) Pyruvic acid	(c) Lactic acid	(d) Acetyl CoA			
161.	F_0 base of oxysome is to	owards :		(M.H. 2005)			
	(a) Outer chamber	(b) Matrix	(c) Inner chamber	(d) Both B and C			
162.	Muscle cells starved of	oxygen and supplied with	pyruvic acid will produce	e (M.H. 2005)			
	(a) Ethanol	(b) Lactic acids	(c) CO_2 only	(d) CO_2 and H_2O			
163.	Products of anaerobic re	espiration are	2	(J.I.P.M.E.R. 2005)			
	(a) Water and alcohol	(b) Water and oxygen	(c) Alcohol and CO_2	$(d) CO_2$ and water			
164.	During which stage in the complete oxidation of glucose are the greatest number of ATP molecul formed from ADP (C.B.S.E. 2005)						
	(a) Glycolysis		(b) Krebs cycle				
	(c) Conversion of pyruv	vic acid to acetyl CoA	(d) Electron transport chain.				
165.	How many molecules of NADH ₂ are produced when four molecules of arc converted into four molecules of pyruvate			phosphogyceraldehyde (Guj.CET. 2006)			
	(a) 8	(b) 2	(c) 4	(d) 6			
166. The overall goal of glycolysis, Krebs cycle and electron transport system is the formation of							
				(C.B.S.E. 2007)			
	(a) ATP in one large oxid	lation reaction	(b) Sugars				
	(c) Nucleic acid		(d) ATP in small steps				

Questionbank Biology

1. (b)	2. (c)	3. (c)	4. (b)	
5. (a)	6. (c)	7. (a)	8. (d)	
9. (a)	10. (a)	11. (c)	12. (a)	
13. (d)	14. (b)	15. (b)	16. (a)	
17 (d)	18 (d)	19 (a)	20 (c)	
21 (a)	22. (b)	23(a)	26. (c) 24 (b)	
25 (h)	22.(6) 26 (b)	23. (a) 27 (b)	$\frac{2}{28}$ (b)	
29. (c)	30 (b)	31 (d)	32. (b)	
$\frac{23}{33}$ (a)	34 (c)	35 (b)	36(c)	
37. (d)	38. (b)	39. (c)	40. (a)	
41. (a)	42. (b)	43. (a)	44. (b)	
45. (a)	46. (b)	47. (c)	48. (a)	
49. (b)	50. (b)	51. (b)	52. (a)	
53. (b)	54. (b)	55. (b)	56. (a)	
57. (a)	58. (b)	59. (b)	60. (c)	
61. (a)	62. (b)	63. (a)	64. (a)	
65. (c)	66. (b)	67. (a)	68. (d)	
69. (a)	70. (b)	71. (d)	72. (c)	
73. (a)	74. (a)	75. (b)	76. (b)	
77. (c)	78. (b)	79. (c)	80. (a)	
81. (b)	82. (a)	83. (a)	84. (b)	
85. (a)	86. (b)	87. (a)	88. (b)	
89. (d)	90. (b)	91. (a)	92. (c)	
93. (b)	94. (b)	95. (b)	96. (b)	
97. (a)	98. (c)	99. (b)	100. (a)	
101. (b)	102. (a)	103. (b)	104. (a)	
105. (b)	106. (d)	107. (a)	108. (d)	
109. (d)	110. (c)	111. (c)	112. (c)	
113. (a)	114. (c)	115. (d)	116. (c)	
117. (c)	118. (d)	119. (a)	120. (b)	
121. (d)	122. (c)	123. (d)	124. (a)	
125. (a)	126. (b)	127. (d)	128. (c)	
129. (d)	130. (d)	131. (d)	132. (c)	
133. (d)	134. (b)	135. (c)	136. (a)	
137. (a)	138. (b)	139. (b)	140. (b)	
141. (b)	142. (a)	143. (b)	144. (c)	
145. (b)	146. (b)	147. (a)	148. (a)	
149. (d)	150. (d)	151. (b)	152. (d)	
153. (b)	154. (b)	155. (c)	156. (a)	
157. (c)	158. (b)	159. (a)	160. (d)	
161. (a)	162. (b)	163. (c)	164. (d)	
165. (c)	166. (d)			

ANSWER KEY

•••

202

INDIAN SCHOOL MUSCAT

INDIAN SCHOOL MUSCAT